- 11

Relationship coefficient
$$\mathbf{Rxy} = \frac{\left(\frac{1}{2}\right)^{\mathbf{n}+\mathbf{n}^{-}} (1 + FCA)}{\sqrt{(1 + F_X)(1 + F_Y)}}$$

Inbreeding coefficient $Fx = (1/2)^{ns + nd + 1} (1 + FCA)$

Computing relationship and inbreeding using path coefficients

- Wright is responsible for the idea of tracing paths to establish the relationships among animals.
- Step1: Convert the bracket pedigree to an arrow diagram in which each individual appears only once.
 Step2: Locate common ancestors (CA)
- **For inbreeding coefficients:** common ancestors are defined to be common to both the sire and the dam of inbred individuals (X).
- **For relationship coefficients**: common ancestors are defined to be common to the two individuals of interest (**x** and **y**)

Step 3: calculate the inbreeding coefficient for inbred common ancestors

Step 4: Full in the following table

Common ancestor	Paths	(1/2) ⁿ⁺ⁿ¹ for R _{xy} or (1/2) ^{ns+nd+1} for F _x	1+FCA	Product of lost two columns

Step 5: Sum the last column to compute the numerator of R_{xy} or F_x

Step 6: Rxy calculations only: divided the sum by $\sqrt{1+F_X} \sqrt{1+F_Y}$

Y _____ B

1. From the following bracket pedigree:

Compute Rxy

Solution

4. Calculate the inbreeding coefficient of individual X (F_x) and the relationship coefficient of the sire and dam (R_{SD}) in the following arrow diagrams of pedigrees.

(A)

Solution : (A)Fx oncestor ns nd 1 (1+Fa) $5 0 1 1 - = (\frac{1}{2})^2$ $F_{X} = (\frac{1}{2})^{2} = 0.25$ $\frac{R_{\text{SD}}}{5} = \frac{\text{ancestor}}{5} \frac{n}{n} \frac{n}{(1+F_3)} = (\frac{1}{2})^{1}$ RSD = (-1)' = 0.50

4. Calculate the inbreeding coefficient of individual X (F_x) and the relationship coefficient of the sire and dam (R_{SD}) in the following arrow diagrams of pedigrees.

Also calculate R_{XE} for this pedigree. $F_X R_X E$

 $R_{XE} = (\frac{1}{2})^3 + (\frac{1}{2})^3 + (\frac{1}{2})^2 + (\frac{1}{2})^3$ = 0.125 + 0.125 + 0.25 + 0.125 = 0.625

Thanks for your attention