Relationship and inbreeding coefficients

Relationship coefficient $\mathbf{R x y}=\frac{\left(\frac{1}{2}\right)^{\mathbf{n + n ^ { - }}}(1+\mathrm{FCA})}{\sqrt{\left(1+\mathrm{F}_{\mathrm{X}}\right)\left(1+\mathrm{F}_{\mathrm{Y}}\right)}}$

Inbreeding coefficient
$F x=(1 / 2)^{\mathrm{ns}+\mathrm{nd}+1}(1+\mathrm{FCA})$

Computing relationship and inbreeding using path coefficients

- Wright is responsible for the idea of tracing paths to establish the relationships among animals.

Step1: Convert the bracket pedigree to an arrow diagram in which each individual appears only once.
Step2: Locate common ancestors (CA)
For inbreeding coefficients: common ancestors are defined to be common to both the sire and the dam of inbred individuals (\mathbf{X}).

For relationship coefficients: common ancestors are defined to be common to the two individuals of interest (\mathbf{x} and \mathbf{y})

Relationship and inbreeding coefficients

Step 3: calculate the inbreeding coefficient for inbred common ancestors
Step 4: Full in the following table

Common ancestor	Paths	$(1 / 2)^{n+n 1}$ for $R_{\mathbf{x y}}$ or $(1 / 2)^{n s+n d+1}$ for $F_{\mathbf{x}}$	1+FCA	Product of lost two columns

Step 5: Sum the last column to compute the numerator of $R_{x y}$ or F_{x}
Step 6: Rxy calculations only: divided the sum by $\sqrt{1+F_{X}} \sqrt{1+F_{Y}}$

Relationship and inbreeding coefficients

1. From the following bracket pedigree:
\square A
B

Compute R_{xy}
Solution

$$
\begin{aligned}
& \text { Ry ancestor } n n^{\prime}(1+F a) \\
& \begin{array}{c}
A \\
B
\end{array} 1 \quad 1 \quad-\quad=\left(\frac{1}{2}\right)^{2} \\
& \begin{aligned}
R_{x y} & =\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2} \\
& =0.25+0.25
\end{aligned} \\
&
\end{aligned}
$$

Relationship and inbreeding coefficients

4. Calculate the inbreeding coefficient of individual $\mathrm{X}(\mathrm{FX})$ and the relationship coefificient of the sire and dam (Rsp) in the following arrow diagrams of pedigrees.
(A)

Relationship and inbreeding coefficients
Solution:

(A)

$$
\begin{aligned}
& F_{X} \frac{\text { ancestor ns nd } 1(1+F O)}{s} 0111-\left(\frac{1}{2}\right)^{2} \\
& F_{X}=\left(\frac{1}{2}\right)^{2}=0.25 \\
& R_{S D} \frac{\text { ancestor } n n(1+F)}{5} 01- \\
& R_{S D}=\left(\frac{1}{2}\right)^{\prime}=0.50
\end{aligned}
$$

Relationship and inbreeding coefficients

4. Calculate the inbreeding coefficient of individual $\mathrm{X}\left(\mathrm{F}_{\mathrm{x}}\right)$ and the relationship coefficient of the sire and dam ($\mathrm{R}_{\text {SD }}$) in the following arrow diagrams of pedigrees.

Also calculate R_{XE} for this pedigree.
$E \times, R \times E$

Relationship and inbreeding coefficients

Also calculate $\mathbb{R}_{x y}$ for this pedigree.

$$
F \times, G \times E
$$

$$
\begin{array}{ccccc}
\text { Fix ancestor } & \text { ns } & \text { nd } & 1+F a) \\
\hline E & 2 & 2 & 1 & =\left(\frac{1}{2}\right)^{5} \\
E & 2 & 1 & 1 & =\left(\frac{1}{2}\right)^{4} \\
E & 2 & 2 & 1 & =\left(\frac{1}{2}\right)^{5} \\
E & 2 & 1 & 1 & =\left(\frac{1}{2}\right)^{4}
\end{array}
$$

$$
\begin{aligned}
F_{X} & =\left(\frac{1}{2}\right)^{5}+\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{5}+\left(\frac{1}{2}\right)^{4} \\
& =0.03125+0.0 .03125+0.03125+0.0625 \\
& =0.1875 \\
& =18.75 \%
\end{aligned}
$$

Relationship and inbreeding coefficients

Also calculate \mathbb{R}_{x} for this pedigree.

$$
F \times, G \times E
$$

$$
\begin{aligned}
& R_{S D} \\
& \begin{array}{cccc}
\text { ancestor } n & n^{\prime}\left(1+F_{-}\right) \\
\hdashline E & 2 & 2 & -
\end{array}=\left(\frac{1}{2}\right)^{4} \\
& \text { 1. } 21-\quad=\left(\frac{1}{2}\right)^{3} \\
& \begin{array}{lll}
1 & 2 & 1 \\
1 & 2 & 2
\end{array} \\
& =\left(\frac{1}{2}\right)^{4} \\
& R_{S D}=\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{4} \\
& =0.0625+0.125+0.125+0.0625 \\
& =0.375
\end{aligned}
$$

Relationship and inbreeding coefficients

$$
F_{5}=\left(\frac{1}{2}\right)^{3}=0.125
$$

$$
\begin{aligned}
& \text { FD ancestor ns nd } \frac{\text { nd }}{E}{ }^{0} 1+F(1+F O) \\
& F_{S}=\left(\frac{1}{2}\right)^{2}=0.25
\end{aligned}
$$

Relationship and inbreeding coefficients
(B)

Also calculate $R_{X E}$ for this pedigree.

$$
F \times, b \times E
$$

$$
\begin{aligned}
R_{S D} & =\frac{0.375}{\sqrt{(1+0.125)(1+0.25)}} \\
& =\frac{0.375}{\sqrt{(1.125)(1.25)}}=\frac{0.375}{1.186}=0.3162
\end{aligned}
$$

Relationship and inbreeding coefficients

Also calculate \mathbb{R}_{xe} for this pedigree.

$$
F \times, G \times E
$$

$$
\begin{aligned}
R_{X E} & =\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3} \\
& =0.125+0.125+0.25+0.125 \\
& =0.625
\end{aligned}
$$

Relationship and inbreeding coefficients

$$
\begin{aligned}
& R_{X E}=\frac{0.625}{\sqrt{(1+0)(1+0.1875)}} \\
&=\frac{0.625}{\sqrt{1.1875}}=\frac{0.625}{1.0897}=0.5736 \\
&=57.36 \%
\end{aligned}
$$

Thanks for your attention

